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Gibbs’s discussion of chemical potentials a t  infinite dilution is applied 
directly to dissociating solvents, for which the result (ap,/am,), = 0, discussed 
by Dunning and Dunning (J., 1952, 2993), follows immediately (m, refers to 
a dissociation product). An alternative demonstration of this theorem, 
making direct reference to dissociation equilibria, and yet avoiding the 
limitations of Dunning and Dunning’s methods, is also described. The 
formula (&%1/am2)0 = 0 applies generally to the other common partial molar 
quantities, and the curvature of the rate of change of any of these quantities 
a t  the composition of the pure solvent is given by the expression 

IN a paper on the thermodynamics of dissociating solvents W., 1952, 2993), Dunning and 
Dunning discuss the effects of complex forms of dissociation upon the proof that 
(ap,/am,), P,m, = 0 when m2 = 0 (the suffixes 1 and 2 referring respectively to the 
solvent and to a solute which is a product of the dissociation of the solvent). This part 
of their paper invites comment for two reasons. First, it may give the misleading 
impression that specific reference to involved equations referring to complex equilibria is 
necessary to establish the general validity of the result that (ap,/am,) = 0 when m2 = 0. 
Secondly, one of their methods of obtaining this result (Zoc. cit., p. 2995) seems to be open to 
criticism, since to make the assertion at any stage of the proof that (ap2/8m,) is not infinite 
when m2 = 0 is, by the Gibbs-Duhem equation (1) equivalent to asserting that 

ml(~Xl/am22)o = - (aX2/h2),,. 

nz,(ap,/am,) + m,(ap,/am,) = 0 . . . . . . . (1) 

(ap1~am2), = 0 which is what is to be proved. It would seem therefore that either such an 
assertion should be avoided or, if it is regarded as self-evident, a direct appeal should be 
made to (1) to establish that (ap,/am,), = 0 before proceeding to the useful discussion of 
the second derivative to examine the extent of the curvature of the function of p, with m2. 

Gibbs’s Method-Such a simple result as that required seems, however, to demand a 
much more direct proof, and it is curious that Gibbs’s relevant discussion should have been 
ignored by later writers. Gibbs (“ Collected Works,” Vol. I, Longmans Green, New York, 
1928, p. 111) first establishes that for stability with regard to continuous changes pi must 
be an increasing function of mi, and then shows that (ap#m,) must be zero when m, = 0 
“ if m, is capable of negative as well as positive values ” (09- cit., p. 135). This argument 
is quite general and independent of any chemical reactions in the solution ; and the example 
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discussed by Gibbs, namely the addition of water to a d t  hydrate (e. cit., p. 136), could 
equally well have involved the hydrate of dinitrogen pentoxide Once this argument is 
accepted, the more complicated discussions by later writers seem only to verify the internal 
consistency of the equations used to characterize the chemical equilibria involved. 

A n  Alternative Demonstration making Direct Mention of Chemical Equilibria.-The 
alternative argument which follows is free from the restriction of Dunning and Dunning's 
first method (Zoc. cit. p. 2994) since it is not Limited to slightly dissociated solvents. 

Let S be a dissociating solvent for which the dissociation equilibrium can be represented 
by the chemical equation 

(2) L i A + j B  + KC.. . . . . . . .--,S . . . . . . 
where i, j, k refer to the numbers of molecules of A, B, C, . . . formed by the dissociation of 
one molecule of S : they may be simpIe fractions when necessary (e.g., $H,O + +N,O, 
HNO,). The products A, B, C, . . . may themselves dissociate further to any extent (even 
completely) since the argument is only concerned with the partial molar free energy of the 
substance A, etc., as it exists in the solction. The condition of chemical equilibrium 
gives : 

Variations in the quantity of the dissociation product A only being considered : 

idpA + j d p B  + &c . . . . . = *s . . . . (3) 

We note that the equations (3) and (4) wi l l  in fact hold even if the solvent is completely 
dissociated since the removal of 1 mole of S from the solution would involve the same 
operation as the removal of i moles A + j moles B + etc. 

The solution may also be regarded in terms of the dissociation products as thermo- 
dynamic components ; the Gibbs-Duhem equation will then apply in the following form : 

m ~ ( a p ~ / a m ~ )  + ~ B ( & L B / ~ ~ A )  + mc(+c/am~) + - = 0 (5) 

Now as the composition of the pure solvent is approached, the ratio mA : MB : mc . . . . 
will approach the ratio i : j : k . . . . and at the exact composition of S, the left-hand sides 
of equations (4) and (5) wiU become identical (apart from an unimportant arbitrary 
multiplier) whatever the values of the individual differential coefficients. Hence it follows 
that the right-hand side of (4), namely (ap@~A), must be identical with the right-hand side 
of (5), i.e. zero. The same obviously applies also to (ap~/am,), etc. This demonstration 
wiU hold for a dissociating solvent which is a compound of any number of components and 
is dissociated to any extent. 

Ionic species of dissociation products present no special difficulty in either of the above 
methods when the electroneutrality condition is obeyed (Guggenheim, '' Modem Thermo- 
dynamics," Methuen, London, 1933, p. 133; or " Thermodynamics, 2nd Ed., North- 
Holland Publishing Co., Amsterdam, 1950, pp. 296, 330). Thus on the addition of 
potassium nitrate to nitric acid, for example, the nitrate ion, being capable of positive and 
negative increments (subject to the condition of electroneutrality), will have no effect 
initially on the chemical potential of the solvent ; whilst the potassium ion, being capable 
of only positive increments, will produce an initial effect similar to that of a foreign non- 
electrolyte. 

Curnature of the Solvent Potedial-Composition Function at Injinite Dilution.-It is 
possible to express the curvature of function of the solvent chemical potential and other 
partial molar quantities with composition in a simple, yet exact, form in the neighbourhood 
of the pure solvent composition. 

Further differentiation of equations (4) and (5) with respect to ma, and elimination of 
the terms ( P k / a ~ 2 )  after multiplication of the derivative of (4) by a = mA/i = mB/j, etc., 
yields,whenmA:mB:mc . . .  = i : j : k  . . .  : 

a(a2ps/amA2) = - ( a p A l i h A )  . . . . . . . (6) 
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By changing the notation and regarding the solvent as component 1 and the solute (a 
dissociation product of 1) as component 2, we may differentiate equation (1) and obtain : 

m,(a2p,/a+?z22) = -(ap&tJ - - ~ ( a 2 p # ? n 2 2 )  . . . . .  (7) 

Equation (7), unlike equation (6) which refers only to the composition of the pure solvent, 
is quite general and exact. Comparison with equation (6), however, shows that, when 
m, = 0, (a2pJdm22) cannot be infinite (which could clearly have been deduced in other 
ways) ; so that at m, = 0 (represented by suffix 0)  : 

. . . . . . .  m,( a%, lant ,2) ,  = - ( a h  lam,), (8) 

Since is an increasing function of m,, &,/am, is positive and (8) therefore formally shows 
p, to be at a maximum. (The identification of equations (6) ahd (8) rests, of course, on the 
fact that differential coeficients with respect to changes in the mass of a given substance 
are independent of the choice of the other components in the system, as explained by Gibbs, 
09. d., p. 92-93.) Dunning and Dunning’s equation (28) is an approximate, special 
form of equation (8); and a similar argument to theirs relating the curvature expressed 
by equation (8) to the degree of dissociation obviously follows. For if the potential depends 
roughly logarithmically upon the actual quantity of A present, there will obviously be a 
larger increment in per mole of A added when there is a small amount of A in the pure 
solvent (slightly dissociated) than when there is a large amount (highly dissociated). 

Other Partial Molar Qztnntities.-The condition that (&,/am,!, = 0 is clearly inde- 
pendent of the temperature and pressure provided that these reman constant during the 
differentiation. Therefore 

and 

Also, since pl = N, - TS, : 

Differentiation of (11) with respect to temperature also gives 

a/a~(ap,/am,), = a/am,(ap,la~),  = - - - ( ~ 3 , / ~ m ~ ~  = o . . .  (9) 

a/aP(ap,/a9n2), = -(aV1/am2), = 0 . . . . . . .  (10) 

(aEi,/ana2), = 0 . . . . . . . .  (11) 

(aEfi,pmJ* = 0 . . . . . . . .  (12) 

- - 

Thus, a l l  the common partial molar quantities of a dissociating solvent in mixtures involving 
only dissociation products are of Lewis and Randall’s “ first type ” (“ Thermodynamics, 
etc.,” McGraw Hill, 1923, p. 44). 

By similar methods the second differential coefficients can all be shown to follow the 
same pattern as for the solvent potential (€9, i.e. : 

m,(a2X,/dm2”, = -(aX2/am,), . . . . . .  (13) 

where X represents any partial molar quantity. Whether equation (13) represents a 
maximum or a minimum in xl depends upon the characteristics of the dissociation process. 
If the solutions can be regarded as ideal when the dissociation has been allowed for, 2, will 
be given approximately by z; + xAHd, where H,’ is the solvent partial molar heat content 
when the dissociation is completely suppressed, x the fractional extent of dissociation, and 
AHd the heat of dissociation. (The cryoscopic implications of this formulation have been 
discussed in an earlier paper; Wyatt, J., 1953, 1175.) Thus whether equation (13) 
represents a maximum or a minimum in a, depends upon whether the dissociation is 
endothermic or not; and corresponding arguments apply to the other partial molar 
quantities, which can be formulated similarly, e.g. pl = v; + xAVd.  The possibility of 
a point of inflection in g,, etc., does not seem to be absolutely excluded, since it is possible 
to  imagine an addition compound’s having a heat of dissociation of zero at the composition 
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of the pure compound, and yet having dissociation products which cause thermal non- 
ideality of opposite signs on opposite sides of this composition. In general, however, a, 
would be expected to exhibit a maximum or a minimum, and E2 would then have the 
characteristic S-shaped curve found by Kunzler and Giauque for water in sulphuric acid 
(J .  Amer. Chem. SOC., 1952, 74, 3472), since it follows from the analogue of equation (l), 
and the value of (3~2/&22)0J that when mz is positive Bl and & will vary in opposite 
directions, whilst when m2 is negative gl and B2 will vary in the same direction. [The 
author’s former discussion of partial molar heat contents in sulphuric acid (Zoc. cit. , p. 1178) 
was in error on this point, and the cryoscopic behaviour of non-electrolytes in this solvent 
therefore seems to demand a less simple explanation than that involving a variable 
cryoscopic constant ; cf. it’yatt, J .  , 1954, 2647.1 

THE UNIVERSITY, SHEFFIELD. [Receitied, April 20th, 1955.1 


